Biochar as a filter media for removing lead and arsenic in water

Jihoon (James) Kang, Assistant Professor
Serio Mireles, MS Student
University of Texas Rio Grande Valley
School of Earth, Environmental and Marine Sciences
Jihoon.kang@utrgv.edu
Terra Preta

A very dark, fertile manmade (anthropogenic) soil found in the Amazon Basin; “black earth” or “black land”

High OM and CEC -> fertile soil in terra preta today...

If this woody aboveground biomass were converted into biochar by means of simple kiln techniques and applied to soil, more than 50% of this C would be sequestered in a highly stable form.
Biochar

• A black carbon obtained from the thermochemical conversion of biomass in an oxygen-limited environment.

• Soil amendment and other environmental applications.
How biochar is made, and its potential applications

Biomass
- Manure
- Organic wastes
- Crop residues (forest and agriculture)

Pyrolysis
Biochar is produced through pyrolysis or gasification — processes that heat biomass in the absence of oxygen.

Biochar
- Returned to soil as Biochar
 - Boost crop yield
 - Reclaim mine sites
 - Sequester carbon
- growth media for greenhouse vegetables and horticultural crops
- Clean up of wastewater in the energy sector
Pristine Biochar

• Woody and grass materials
 – Wood and grass including invasive species
 – Forestry residues
 – Sawdust and lumber residues

• Agricultural wastes
 – Shells, hulls, etc
 – Manure
 – Citrus residuals

• Solid waste
 – Yard wastes
 – Municipal sludge
Engineered Biochar

- **Impregnations**
 - Nano metal oxyhydroxides (e.g., Magnetized biochar)
 - Graphene and carton nanotube

- **Surface activation**
 - Activated carbon
 - Oxidation
 - Coating
Heavy metal removal in water

- Membrane filtration
- Ion exchange resin
- Precipitation
- Adsorption

Study objectives

• To produce biochars using locally-sourced feedstock materials
• To evaluate the biochars for their efficacy in binding aqueous lead and arsenic.
• To investigate biochar performance affected by pyrolysis temperature and feedstock types.
Biochar Production in this study

Pyrolyzed each biomass at three different temperatures (300 °C, 450° C, and 600°C) for 1 hr.
Adsorption experiment

- **Single Point Adsorption**: used 10 ppm of Pb, 10 mg of biochar, and 4 ml of solution.
 - The single point adsorption studies were done to determine which biochar pyrolyzed at a different temperature was more effective in removing lead.
- **Effect of solution pH**: solutions were adjusted to a pH range of 2-6.
- **Adsorption isotherms**: the adsorption isotherm were conducted at varying concentrations of aqueous Pb (5, 10, 25, 50, 100, and 250 mg L\(^{-1}\)) in triplicates and their pH was adjusted to pH 6.
Pyrolysis temperature > 450 °C for corn stover biochar resulted in greater Pb binding while lower temperature did better for orange peel biochar.
Effect of solution pH on Pb binding onto the biochars

- Pb adsorption efficiency increases with the increase in pH
Pb adsorption isotherm fitted by Langmuir model

Max. Sorption Capacity (S_{max}) for CS600 = 25,000 mg kg\(^{-1}\)

S_{max} for OP300 = 11,000 mg kg\(^{-1}\)

S_{max} for PS600 = 2,500 mg kg\(^{-1}\)
Biochar characterization

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>pH</th>
<th>(^a)EC ((\mu)Scm(^{-1}))</th>
<th>(^b)SA (m(^2)/g)</th>
<th>Ash (%)</th>
<th>Moisture (%)</th>
<th>(C) (wt.%)</th>
<th>(O) (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange Peel</td>
<td>300</td>
<td>42.88</td>
<td>8.99</td>
<td>278</td>
<td>8.873</td>
<td>4.0</td>
<td>1.60</td>
<td>77.11</td>
<td>22.89</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>29.25</td>
<td>9.34</td>
<td>606</td>
<td>0.811</td>
<td>5.0</td>
<td>2.50</td>
<td>83.99</td>
<td>16.01</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>25.80</td>
<td>9.37</td>
<td>725</td>
<td>2.208</td>
<td>2.0</td>
<td>1.00</td>
<td>91.98</td>
<td>8.02</td>
</tr>
<tr>
<td>Corn Stover</td>
<td>300</td>
<td>36.66</td>
<td>8.16</td>
<td>284</td>
<td>1.432</td>
<td>1.0</td>
<td>6.25</td>
<td>79.97</td>
<td>20.03</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>25.41</td>
<td>8.38</td>
<td>327</td>
<td>1.071</td>
<td>2.0</td>
<td>7.50</td>
<td>84.43</td>
<td>14.73</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>21.25</td>
<td>8.72</td>
<td>457</td>
<td>3.623</td>
<td>2.0</td>
<td>5.00</td>
<td>87.33</td>
<td>11.14</td>
</tr>
<tr>
<td>Pistachio Shells</td>
<td>300</td>
<td>42.40</td>
<td>7.36</td>
<td>151.3</td>
<td>0.980</td>
<td>1.0</td>
<td>1.00</td>
<td>81.58</td>
<td>18.36</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>24.32</td>
<td>7.49</td>
<td>165.2</td>
<td>3.320</td>
<td>2.60</td>
<td>2.50</td>
<td>88.33</td>
<td>11.55</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>20.23</td>
<td>7.52</td>
<td>181.9</td>
<td>268.94</td>
<td>2.60</td>
<td>2.50</td>
<td>92.08</td>
<td>7.78</td>
</tr>
</tbody>
</table>

Arsenic removal with orange peel biochar

- As (III) is more toxic (40-60 times) than As (V)

\[H_3\text{AsO}_4 + 3\text{H}^+ + 2\text{e}^- \rightarrow H_3\text{AsO}_3 + \text{H}_2\text{O} \]

Arsenate, As (V) \hspace{2cm} Arsenite, As (III)

http://2the4.net/arsenicart.htm
Our preliminary data showed that As binding was poor with OP biochar.....

• Because arsenic stays as an oxyanion and biochar surface is mostly negatively charged.
Magnetized biochar

- Coated biochar surface with iron oxide -> magnetized biochar

FeCl₂

OP biochar + NaOH

Magnetized OP biochar
OP biochar before magnetization

OP biochar after magnetization
As (III) and As (V) adsorption study is in progress.

Applications of biochar for stormwater management

- Filtration media in new/existing treatment systems (e.g., filter socks, bioswale, permeable reactive barrier, etc.)
“Water is the driver of Nature.”
“We might say that the earth has the spirit of growth; that its flesh is the soil.”
- Leonardo da Vinci

Jihoon (James) Kang
(jihoon.kang@utrgv.edu)