

0

NEWTON TEDDER EPA REGION 1

BOSTON

- REGULATION BACKGROUND
- CHARLES RIVER HISTORY AND STORMWATER BMP PERFORMANCE IN NEW ENGLAND
- CHARLES RIVER PERMIT REQUIREMENTS
- COMPLIANCE TOOLS
- QUESTIONS

CWA 402(P)(3)(B) AND IMPLEMENTING REGULATIONS IN 40 CFR §§ 122.26 AND 122.34

REQUIRE NPDES PERMITS FOR STORMWATER DISCHARGES FROM MS4S TO EFFECTIVELY PROHIBIT NON-STORMWATER DISCHARGES INTO THE SEWER SYSTEM; AND TO REQUIRE CONTROLS TO REDUCE POLLUTANT DISCHARGES TO THE MAXIMUM EXTENT PRACTICABLE (MEP) INCLUDING BMPS, AND OTHER PROVISIONS AS EPA DETERMINES TO BE APPROPRIATE FOR THE CONTROL OF SUCH POLLUTANTS

SIX MINIMUM CONTROL MEASURES

PUBLIC EDUCATION

٢

- PUBLIC INVOLVEMENT
- ILLICIT DISCHARGE DETECTION & ELIMINATION
- CONSTRUCTION SITE RUNOFF
- POST-CONSTRUCTION STORMWATER MANAGEMENT
- GOOD HOUSEKEEPING/POLLUTION
 PREVENTION

WATER-QUALITY BASED REQUIREMENTS?

WATER QUALITY STANDARDS IN MS4 PERMITS

GENERIC

0

- NO AUTHORIZATION FOR THOSE DISCHARGES NOT MEETING WATER QUALITY STANDARDS
- 2003 PHASE II MA/NH PERMIT APPROACH

SPECIFIC

- SPECIFIC BMP IMPLEMENTATION
 REQUIREMENTS ABOVE MEP
- NUMERIC TARGETS WHERE APPLICABLE
- SCHEDULES WHERE APPROPRIATE
 2016 PHASE II MA PERMIT APPROACH

2014 TMDL AND STORMWATER SOURCES MEMO

WHERE THE NPDES PERMITTING AUTHORITY DETERMINES THAT MS4 DISCHARGES HAVE THE REASONABLE POTENTIAL TO CAUSE OR CONTRIBUTE TO A WATER QUALITY STANDARD EXCEEDANCE, THE PERMITTING AUTHORITY SHOULD "EXERCISE ITS DISCRETION" TO INCLUDE THE NECESSARY REQUIREMENTS TO MEET WATER QUALITY STANDARDS

"Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs" (November 26, 2014)

WHEN IS MEP NOT ENOUGH

- CATEGORY 5 WATERS IMPAIRED FOR:
 - NITROGEN OR PHOSPHORUS
 - METALS

٢

- SOLIDS
- BACTERIA OR PATHOGENS
- CHLORIDE
- OIL AND GREASE

TMDLS WITH WLA'S OR
 LA'S FOR STORMWATER
 SOURCES

LOWER CHARLES RIVER PHOSPHORUS TMDL CHARLES RIVER WATERSHED

308 Square Mile Watershed (61 sq. mi. (39,000 ac.) of impervious cover (IC • 80 Miles in Length All or part of 35 Cities and Towns ~900,000 population ~747,000 in Boston,

Cambridge and Brookline

HISTORICAL OVERVIEW

LOWER CHARLES RIVER PHOSPHORUS TMDL WASTE LOAD ALLOCATIONS

Source	Existing Load (kg/year) (1998-2002)	Waste Load Allocation (kg/year)	Load Allocation (kg/year)	TMDL (kg/year)	% Reduction
Upstream Watershed at Watertown Dam ^g	28.025	15 109	0	15 100	48%
	20,725	13,107	0	13,107	4070
CSOs ^b	2,263	90°	0	90 ^c	96%
Stony Brook Watershed	5,123	1,950	0	1,950	62%
Muddy River Watershed	1,549	590	0	590	62%
Laundry Brook Watershed	409	155	0	155	62%
Faneuil Brook Watershed	326	125	0	125	62%
Other Drainage Areas	1,455	550	0	550	62%
Explicit Margin of Safety	-	-	-	979	
TOTAL	40,050	18,565	0	19,544	54%

 \bigcirc

KEY QUESTIONS ALONG THE WAY

- SW PHOSPHORUS LOADS: FROM WHERE AND HOW MUCH?
- TECHNICAL FEASIBILITY:

- CAN IT BE DONE?
 - WHAT ARE THE EFFECTIVENESS OF VARIOUS SW CONTROLS?
 - WHAT CONTROLS AND DESIGNS CAN INCREASE TECHNICAL AND ECONOMIC FEASIBILITY?
- HOW CAN IT BE DONE?

 ACCOUNTABILITY: HOW DO WE ENSURE REAL AND CREDIBLE PROGRESS IS BEING MADE BY PERMITTEES AND AVOID "CREATIVE" ACCOUNTING?

- WHAT ARE THE MOST COST EFFECTIVE APPROACHES TO ACHIEVE REDUCTIONS?
- HOW MUCH WILL IT COST AND HOW CAN IT BE PAID FOR?
- WHAT TOOLS AND ASSISTANCE ARE NEEDED FOR PERMITTEES TO DEVELOP AND IMPLEMENT CREDIBLE AND MOST COST EFFECTIVE PROGRAMS?

GENERATION OF SW CONTROL PERFORMANCE CURVES FOR NEW ENGLAND REGION

SW Controls

0

Surface Infiltration (6 infiltration rates)

Infiltration trenches (6 infiltration rates)

Bio-filtration

Porous pavement with underdrain

WQ Swales (non-infiltration)

Gravel wetland

Enhanced Bio-filtration*
* Optimized for N and P removal

SW CONTROL LONG-TERM CUMULATIVE PERFORMANCE CURVE CONCEPT

SW Control Performance Curves Surface Infiltration Practices

Small Rain Garden http://www.flickr.com/photos/cdwilliams1/2915660835/ Larger Stormwater Basin http://www.flickr.com/photos/leonizzy/6232922661

CNEW ENGLAND REGION PRECIPITATION PATTERNS RELEVANT POINTS

MOST RAIN EVENTS ARE SMALL IN SIZE;

0

- OCCUR REGULARLY (AVERAGE ABOUT ONCE EVERY THREE DAYS)
- THE TOTAL VOLUME AND EVENT SIZE
 DISTRIBUTION ARE RELATIVELY CONSISTENT
 ACROSS NEW ENGLAND REGION
- IMPORTANT DRIVER FOR POLLUTANT LOAD DELIVERY AND CUMULATIVE PERFORMANCE OF SW CONTROLS

Distribution of Precipitation Events by Depth; Boston, MA 1992-2014 (excludes all events with depths < 0.05 inches)

DEMONSTRATION PROJECT: OPTIMIZATION ANALYSIS FOR 3 UPPER CHARLES TOWNS

- CONDUCTED BY TETRA TECH, INC. TO EVALUATE BROAD SW
 MANAGEMENT STRATEGIES TO INFORM PERMIT DEVELOPMENT
- BIG PICTURE KEY FINDINGS:
 - THE RANGE IN ESTIMATED COSTS FOR IMPLEMENTATION OF SW CONTROLS WATERSHED-WIDE TO ACHIEVE A SET PHOSPHORUS REDUCTION TARGET IS HUGE
 - STANDARDIZE SIZING OF CONTROLS (ONE SIZE FITS ALL) WILL BE MUCH MORE EXPENSIVE (ADMINISTRATIVE EASE MAY BE UNAFFORDABLE AND UNWISE)
 - COMPREHENSIVE OPTIMIZATION PROCESS WILL HELP IDENTIFY THE BEST COMBINATION OF CONTROLS, DESIGN CAPACITIES AND LOCATIONS TO ACHIEVE REQUIRED LOAD REDUCTION AT LEAST COST

٢

 \bigcirc

Average Capacity of structural controls needed to achieve a phosphorus load reduction of 40% in the Charles River Watershed of Milford, Bellingham & Franklin, MA based on the treatment of varying amounts of impervious area

structural controls

of

Weighted average capacity

impervious cover

from

inches of runoff

Percentage of Impervious Area Treated in CRW of Milford, Bellingham, & Franklin MA

Estimated Construction Costs for Structural Stormwater Controls to Achieve a 40 % Reduction in Phosphorus Load form the Charles River Watershed in Milford, Bellingham & Franklin based on Amount of Impervious Area Treated

contingencies \$ Cost, and Construction engineering Estimated for 35% σ includes

TYPICAL MONTHLY UTILITY AND SERVICE COSTS FOR HOUSEHOLDS IN RHODE ISLAND

IMPORTANT LESSONS LEARNED FOR MANAGING SW IN DEVELOPED WATERSHEDS

 CREDIBLE ACCOUNTING SYSTEM IS NEEDED FOR CONSISTENCY AND TO AVOID CREATIVE ACCOUNTING.
 ALSO, NEEDED FOR CONDUCTING COMPREHENSIVE PLANNING AND OPTIMIZATION ANALYSES.

0

 COMPREHENSIVE PLANNING WITH OPTIMIZATION IS A WORTHWHILE INVESTMENT FROM BOTH COST EFFECTIVENESS AND ENVIRONMENTAL BENEFIT VIEWPOINTS SW PROFESSIONALS WILL NEED READY ACCESS TO CREDIBLE INFORMATION AND SW MANAGEMENT OPTIMIZATION TOOLS TO SHIFT PARADIGMS FROM CONVENTIONAL APPROACHES (E.G., ONE-SIZE FITS ALL)TO MORE FLEXIBLE- COST-EFFECTIVE-OPTIMIZED APPROACHES.

 CONSIDERATION OF SMALL CAPACITY SW CONTROLS (E.G., 0.2 TO 0.5 INCHES) INCREASES BOTH TECHNICAL AND ECONOMIC FEASIBILITY FOR IMPLEMENTING CONTROLS IN DEVELOPED LANDSCAPES & WILL ENCOURAGE INNOVATION

ACCOUNTING PRINCIPLES

• THE ACCOUNTING METHODOLOGY MUST:

- BE BASED ON CREDIBLE INFORMATION FOR QUANTIFYING SOURCES AND REDUCTION CREDITS FOR VARIOUS CONTROL PRACTICES
- ALLOW FOR ACCOUNTING ACROSS JURISDICTIONAL AND SUB-WATERSHED BOUNDARIES WITHIN THE WATERSHED OF INTEREST (ENSURES CONSISTENCY AND FAIRNESS AMONG PERMITTEES & AVOIDS CREATIVE ACCOUNTING)
- BE RE-VISITED FROM TIME TO TIME TO UPDATE
 INFORMATION AND INCORPORATE NEW INFORMATION

UPPER/MIDDLE AND LOWER CHARLES TMDL WLAS

٢

Land Use Group	Upper TMDL WLA % Reduction Rate	Lower TMDL WLA % Reduction Rate
Commercial	65%	62%
Industrial	65%	62%
High Density Residential	65%	62%
Medium Density Residential	65%	62%
Low Density Residential	45%	62%
Highway	65%	62%
Open Space	35%	62%
Agriculture	35%	62%
Forest	0%	0%

INTERPRETATION OF WLAS

Final Lower Charles River Phosphorus Load Reduction Recommendations

٢

Charles River Watershed	All Commercial	All Industrial	High Density Residential	Medium Density Residential	Low Density Residential	Agriculture	Forest	Open Land	WWTF	CSO	Total
Drainage Area (hectares)	2168	3891	9232	9331	11077	2063	30844	8428	NA	NA	77034
Annual Phosphorus Loads (kg/yr)	3676	5718	10437	5278	503	1042	4018	289	6825	2263	40050
MDL Recommended Phosphorus Loads (kg/yr)	1268	1972	3600	1820	276	672	4018	187	4663	90	18565
Needed % Reduction	65%	65%	65%	65%	45%	35%	0%	35%	32%	96%	53.6%

Phosphorus load reductions by source category based on Final Total Maximum Daily Load for Nutrients In the Lower Charles River Basin, Massachusetts (CN 301.0), June, 2007.

Charles River Watershed Community	Commercial	Industrial	High Denisty Residential	Medium Density Residential	Low Density Residential	Agriculture	Forest	Open Land	Total	Percent Reduction Required
Bellingham										
Drainage Area (ha)	58.8	212.0	134.2	240.0	212.2	57.1	1315.9	245.0	2475.3	ן
1998-2002 Loading (kg/yr)	99.8	311.7	151.9	135.9	9.7	28.8	171.6	8.4	917.8	
TMDL Loading (kg/yr)	34.4	107.5	52.4	46.9	5.3	18.6	171.6	5.4	442.1	51.8%
Belmont	Belmont									
Drainage Area (ha)	7.2	10.0	105.1	0.9	30.5	0.0	99.9	96.5	350.1	
1998-2002 Loading (kg/yr)	12.3	14.7	118.9	0.5	1.4	0.0	13.0	3.3	164.1	
TMDL Loading (kg/yr)	4.2	5.1	41.0	0.2	0.8	0.0	13.0	2.1	66.4	59.5%
Boston					•					
Drainage Area (ha)	587.1	541.5	2556.5	43.4	20.2	7.4	688.2	1444.0	5888.3	
1998-2002 Loading (kg/yr)	996.4	796.4	2892.4	24.6	0.9	3.7	89.7	49.6	4853.8	
TMDL Loading (kg/yr)	343.7	274.7	997.6	8.5	0.5	2.4	89.7	32.0	1749.0	64.0%
Brookline	Brookline									
Drainage Area (ha)	135.9	10.0	588.2	209.4	254.8	42.9	157.0	357.1	1755.5	
1998-2002 Loading (kg/yr)	230.7	14.8	665.5	118.5	11.6	21.7	20.5	12.3	1095.5	
TMDL Loading (kg/yr)	79.6	5.1	229.5	40.9	6.3	14.0	20.5	7.9	403.8	63.1%
Cambridge										
Drainage Area (ha)	123.1	126.9	205.7	0.0	0.0	0.0	3.1	181.7	640.4	
1998-2002 Loading (kg/yr)	208.9	186.6	232.7	0.0	0.0	0.0	0.4	6.2	634.8	
TMDL Loading (kg/yr)	72.0	64.3	80.3	0.0	0.0	0.0	0.4	4.0	221.1	65.2%

• NUMERIC REDUCTION REQUIREMENTS IN THE PERMIT

	Com	munity - Tab	le F1	Regulated Area - Table F2			
	Baseline	Baseline Reduction Reduction			Reduction	Reduction	
Community	(lb/yr)	(lb/yr)	(%)	(lb/yr)	(lb/yr)	(%)	
Bellingham	2,112	759	36	1,790	670	37	
Franklin	5,219	1,916	37	5,146	1,905	37	
Medway	2,351	743	32	2,293	723	32	
Natick	2,531	946	37	2,276	886	39	
Somerville	1,870	300	16	448	95	21	

 \bigcirc

IMPLEMENTATION SCHEDULE

۲

5 years after permit effective date	5-10 years after permit effective date	10-15 years after permit effective date	15-20 years after permit effective date
Create Phase 1 Plan	Implement Phase 1 Plan		
	Create Phase 2 Plan	Implement Phase 2 Plan	
		Create Phase 3 Plan	Implement Phase 3 Plan

 \bigcirc

 \bigcirc

IMPLEMENTATION SCHEDULE

0

~

DEMONSTRATING COMPLIANCE

 $P_{exp}\left(\frac{mass}{yr}\right) = P_{base}\left(\frac{mass}{yr}\right) - \left(P_{Sred}\left(\frac{mass}{yr}\right) + P_{NSred}\left(\frac{mass}{yr}\right)\right) + P_{DEVinc}\left(\frac{mass}{yr}\right)$ Equation 1. Equation used to calculate yearly phosphorus export rate from the chosen PCP Area. P_{exp} =Current phosphorus export rate from the PCP Area in mass/year. P_{base} =baseline phosphorus export rate from LPCP Area in mass/year. P_{Sred} = yearly phosphorus reduction from implemented structural controls in the PCP Area in mass/year. P_{NSred} = yearly phosphorus increase resulting from development since 2005 in the PCP Area in mass/year.

Table 1: Average Annual Phosphorus Load Export Rates for use in the MA MS4 Permit

Phosphorus Source Category by Land Use	Land Surface Cover	Phosphorus Load Export Rate, Kg/ha/yr	Comments			
Commorrial (Com) and Industrial (Ind)	Directly connected impervious	2.0	Derived using a combination of the Lower Charles USGS Loads study and NSWQ dataset. This RLEP is approximately 75% of the HDP RLEP and reflects the difference in			
Commercial (Com) and maustrial (ma)	Pervious	See* DevPERV	the distributions of SW TP EMCs between Commercial/Industrial and Residential.			
Multi-Family (MFR) and High-Density	Directly connected impervious	2.6	Largely based on loading information from Charles USGS loads, SWMM HRU modeling,			
Residential (HDR)	Pervious	See* DevPERV	and NSWQ data set			
Madium - Density Pasidential (MDP)	Directly connected impervious	2.2	Largely based on loading information from Charles USGS loads, SWMM HRU modeling,			
	Pervious	See* DevPERV	and NSWQ data set			
	Directly connected impervious	1.7	Derived in part from Mattson Issac, HRU modeling, lawn runoff TP quality information			
Low Density Residential (LDR) - "Rural"	Pervious	See* DevPERV	from Chesapeake Bay and subsequent modeling to estimate PLER for DCIA (Table 14) to approximate literature reported composite rate 0.3 kg/ha/yr.			
	Directly connected impervious	1.5	Largely based on USGS highway runoff data, HRU modeling, information from Shaver			
ngliway (nw l)	Pervious	See* DevPERV	composite rate 0.9 kg/ha/yr.			
	Directly connected impervious	1.7	Derived from Mattson & Issac and subsequent modeling to estimate PLER for DCIA that			
Forest (For)	Pervious	0.13	corresponds with the literature reported composite rate of 0.13 kg/ha/yr (Table			
	Directly connected impervious	1.7	Derived in part from Mattson Issac, HRU modeling, lawn runoff TP quality information			
Open Land (Open)	Pervious	See* DevPERV	from Chesapeake Bay and subsequent modeling to estimate PLER for DCIA (Table 14) to approximate literature reported composite rate 0.3 kg/ha/yr.			
	Directly connected impervious	1.7	Derived from Budd, L.F. and D.W. Meals and subsequent modeling to estimate PLER for			
Agriculfure (Ag)	Pervious	0.5	DCIA to approximate reported composite PLER of 0.5 kg/ha/yr.			
*Developed Land Pervious (DevPERV)- Hydrologic Soil Group A	Pervious	0.03				
*Developed Land Pervious (DevPERV)- Hydrologic Soil Group B	Pervious	0.13				
*Developed Land Pervious (DevPERV) - Hydrologic Soil Group C	Pervious	0.24	Derived from SWMM and P8 - Curve Number continuous simulation HRU modeling with assumed TP concentration of 0.2 mg/L for pervious runoff from developed lands. TP of 0.2 mg/L is based on TB-9 (CSN, 2011), and other PLER literature and assumes			
*Developed Land Pervious (DevPERV) - Hydrologic Soil Group C/D	Pervious	0.33	unfertilized condition due to the upcoming MA phosphorus fertilizer control legislation.			
*Developed Land Pervious (DevPERV) - Hydrologic Soil Group D	Pervious	0.41				

 \bigcirc

٢

GENERATION OF SW CONTROL PERFORMANCE CURVES FOR NEW ENGLAND REGION

SW Controls

0

Surface Infiltration (6 infiltration rates)

Infiltration trenches (6 infiltration rates)

Bio-filtration

Porous pavement with underdrain

WQ Swales (non-infiltration)

Gravel wetland

Enhanced Bio-filtration*
* Optimized for N and P removal

OPTI-TOOL

- A SPREADSHEET-BASED BMP
 OPTIMIZATION TOOL
 - PLANNING LEVEL ANALYSIS (EPA REGION 1 BMP PERFORMANCE CURVES)
 - IMPLEMENTATION LEVEL ANALYSIS (EPA SUSTAIN BMP SIMULATION AND OPTIMIZATION ENGINE)
- CUSTOMIZED FOR EPA REGION 1

	BATT	
lit Project		
Select a Jurisdiction		
kisting Project		
Select a Structural BMP Project	Edit Delete	
Select a Non-Structural BMP Project	Edit Delete	
Select a Land Use Conversion Project	View Project Summary	
	BMP Projects	
Add BMP Add BMP (Structural) (Non-Structura	I) Structural BMPs Non-Structural BMPs Land Use Con	nversion
	– Project Summary Credit –	
	Structural Non-Structural LU Convers	sion Total
	Nitrogen Reduced Load (lb/yr)	
	Sediment Reduced Load (lb/yr)	
		Close

BATT AUTOMATED CALCULATIONS

LAND AREA POLLUTANT LOADING:

- BASED ON LAND USE, SOIL TYPE, IMPERVIOUS AREA
- ANNUAL PHOSPHORUS LOAD EXPORT RATES
 (PLERS) FROM PERMIT BUILT INTO TOOL

BMP POLLUTANT REDUCTIONS:

 EPA/TETRATECH WORK ON BMP CURVES FOR STRUCTURAL BMPS IN PERMIT AND BUILT

THANK YOU

 \bigcirc

MA SMALL MS4 WEBSITE:

۲

HTTPS://WWW3.EPA.GOV/REGION1/NPDES/STORMWATER/MS4_MA.HTML

Newton Tedder <u>Tedder.newton@epa.gov</u> 617-918-1038 Mark Voorhees <u>Voorhees.mark@epa.gov</u> 617-918-1537