2016 EPA Region 6 Stormwater Conference 18th Annual Stormwater Workshop Oaklahoma City October 2nd – 6th 2016

ENGINEERING OPTIMAL FINANCIAL, SOCIAL, AND ENVIRONMENTAL RETURNS

John Parker, ENV-SP, Chief Economist, Impact Infrastructure, Inc.

John Wise, PE, CFM, ENV-SP, Managing Principal, Stantec

Mikel Wilkens, PE, ENV-SP, Environmental/Sustainability Program Manager VERDUNITY

Engineering Optimal Financial, Social, And Environmental Returns

- 9:30 to 9:45 Introductions and Overview
 - Calculating Triple Bottom Line Returns and Valuing Public Benefits
- 9:40 to 10:20 The Value of Green Infrastructure. Examples:
 - Case 1. Tucson, AZ
 - Case 2. Fort Worth, TX
 - Case 3. Los Angeles, CA
- 10:20 to 10:30 Q&A

Introductions and Overview

John Parker, ENV-SP, Chief Economist, Impact Infrastructure, Inc.

John Wise, PE, CFM, ENV-SP, Managing Principal, Stantec

Mikel Wilkens, PE, ENV-SP, Environmental/Sustainability Program Manager, VERDUNITY

Overview

- As projects get more complex, engineers must adjust to new paradigms.
- Federal funding, regulation, best value based procurements, community sustainability and resilience requirements increase the need for decisions based on Cost-Benefit, LCCA, and TBL Analysis.
- Practical and accessible economic tools help engineers deliver value and compelling business cases for green infrastructure to varied stakeholders.

Calculating Triple Bottom Line Returns and Valuing Public Benefits

Sustainability and the Public Good

- There are always public and quality of life benefits associated with infrastructure. Indeed, we build infrastructure for the public good and the public benefits that it brings. That is why these projects are called Public Works.
- Infrastructure projects are often sold on their sustainability benefits or how the infrastructure contributes to resiliency.
- The sustainability benefits can help make the business case for a project that otherwise just looks like a cost on the public ledger.
- These sustainability benefits can include resiliency and insurance against climate change.

Custodians of the Public Good

- AEC firms are more and more being hired to assess, or be responsible for, infrastructure's impact on sustainability and ecosystems.
- These firms are being asked to minimize the negative externalities of their projects while at the same time maximizing the positive spin-offs and public benefits.
- There is a need for a decision framework that is transparent, objective and can evaluate infrastructure project sustainability.
- CBA can be made to fit this bill, and when standardized and integrated into BIM can be a key risk management tool.

Green? Prove it!

- The demands to plan, build and operate responsibly are dramatically increasing.
- Stakeholders are becoming more sensitive, organized, and vocal. As a result, infrastructure projects should take responsibility for their externalities.
- Standardization of the data, methodologies, and output from CBA is required to make it accessible to Architecture, Engineering and Consulting (AEC) firms in their familiar planning, design, and construction processes.
- A standardized cost benefit framework that monetizes externalities allows AEC firms to respond rationally and in ways that are simultaneously defensible and transparent to all stakeholders.

Sustainable Return on Investment (S-ROI)

Process for calculating benefits and costs of a project to justify an investment or compare projects.

- Cost-Benefit Analysis (CBA) measuring financial cash flows and externalities (environmental and social)
- Risk Analysis measuring the risk associated with inputs and methodologies used in CBA
- Multiple Account CBA mini CBA's by stakeholder or account

The S-ROI process accounts for a project's triple bottom line – its full range of economic/financial, environmental, and social impacts.

S-ROI

- Monetary valuation of Triple
 Bottom Line
- Proven method in multiple contexts
- Applicable for program, project level decisions
- Accounts for risk & uncertainty

When the Chickens Come Home to Roost

- Making comprehensive Cost Benefit Analysis (CBA) part of infrastructure planning exposes environmental and societal risks that may become financial risks.
- Standards engender productivity. They reduce waste, improve communication, and reduce risks.
- CBA has to be standardized and embedded into engineering, architecture and design processes such as Building Information Modelling (BIM).
- If an AEC firm is designing an infrastructure project and has not developed a plan to deal with wetland loss it may have angry birders on its case. When peoples' hackles are raised, environmental and social risks can quickly become project and financial risks with real dollar impacts.
- This is why so many companies in industries with active opponents or sensitive stakeholders are using CBA to put prices on non-market goods and services to determine value

Standardization Lets Project Professionals Use CBA -1

- Economists wanting to do custom studies are ignoring the standardization being driven by governments, the accumulation of research in databases and the application of benefits transfer using meta-analyses.
- The answer is don't leave it to economists. Give the tools to those who know the most about the project, the professional planners, engineers and architects. And make it part of the BIM workflow these professionals use so that it can be run often and used for all the small design changes that affect the sustainability of a project.
- Standardization of CBA data and methodologies means that it can be embedded in BIM and automatically extract up to date project data.

Standardization Lets Project Professionals Use CBA - 2

- As every tree placed in a project is registered in a BIM model and can be fed into the CBA analysis and the urban heat island benefits, the stormwater flood control, water, and air quality and carbon benefits are fed back to the designer in real time.
- Making CBA part of infrastructure planning exposes environmental and societal values and risks that may become financial risks.
- Given advancement in the volume of research, databases and metaanalyses that summarize it, and government initiatives to standardize CBA, large and small design decisions on infrastructure projects that affect sustainability and project risk can be made by project professionals as part of their BIM workflow.

Autocase: Economic Analysis Software

The Value of Green Infrastructure

Examples: Tucson, AZ; Fort Worth, TX; Los Angeles, CA

The Value of Green Infrastructure

Tucson, AZ

The Rationale – Autocase[™] and Envision[™]

To make sensible comparisons between green infrastructure/low impact development and traditional grey infrastructure

- Through a common metric
- To value the risk & benefits of sustainable projects
- Integrating engineering and economic methods to price options for decision-making.
- Identify optimal outcomes
- So that the project is done right and the right project is done.
- To provide a tool for professional designers to utilize and better understand design configurations and the benefits of GI/LID.

Premise

- In more humid areas GI/LID practices are cost-effective by enhancing the potential for reducing or eliminating the risk of sewer overflows.
- Potential contaminant migration in stormwater tends to be more limited in arid environments as water bodies are few and groundwater is deep.
- Stormwater management important because use of stormwater can offset the need for potable water.
- Vegetation watered with stormwater potential to decrease energy use, improve quality of life by mitigating effects from the urban heat island.

Background

- The Pima County Regional Flood Control District and the City of Tucson, created a Low Impact Development and Green Infrastructure Guidance Manual to facilitate the adoption of GI/LID practices following a joint Water-Wastewater (2010) Infrastructure, Supply and Planning Study
- Despite efficient water use, best practices in stormwater management, and water re-use, renewable water resources are diminishing due to drought across the Colorado River Basin as the population grows.

Unique Regional Aspects

- Does not have combined sanitary sewers/storm sewer
 - Does not suffer from combined sewer overflow problems
 - The desert environment does experience monsoons with potential for severe flooding
 - Also seeks the beneficial use of stormwater for irrigation.
- AutoCASE[™] was made more useful by calculating the cost and benefit based on the desert regions common to the arid Southwest.

Goal and Rationale

To evaluate GI/LID benefits in the Pima County environment.

- AutoCASE[™] uses economic and risk analysis to evaluate costs and multi-benefits using AutoCAD Civil3D files of GI/LID practices.
- Because of the motivating factors for use of GI/LID unique in Pima County, there is a need to evaluate the costs and multi-benefits of these features in that environment.
- This comparison provides a framework for how community can plan and adapt to become more resilient utilizing GI/LID in stormwater-management.

Deliverables

- A beta version of AutoCASE TM with initial parameters for GI/LID practices.
- Evaluation costs/multi-benefits of two clustered GI/LID scenarios (commercial site and transportation corridor) considering a series of individual practices.
- List of factors that contribute most to the two scenarios to calculate effectiveness of the GI/LID practices with the associated probabilities.
- Evaluation of the economic and environmental returns from investing in GI/LID practices in the arid west
 - e.g. recreational benefits, air pollution reduction, carbon reduction, water quality improvements, lower urban heat island mortality rate etc.

GI/LID Features Evaluated

- Eight green infrastructure (GI) features evaluated
- Features also combined in two sites:
 - A commercial site
 - A roadway reach
- Economic analysis used to determine which GI features provide the greatest benefits in Tucson and how they can be used to comply with:
 - Commercial rainwater harvesting ordinance
 - Green streets guidelines

GI/LID Practices Evaluated

- Water Harvesting Basins
- Bio Retention Basins
- Xeriscape Swales
- Cisterns
- Infiltration Trenches
- Detention Basins (or Extended Detention Basins)
- Pervious Pavers
- Curb Extensions, new & retrofit chicanes, medians, road diets with inlets to gather street water runoff, traffic circles)

Cost-Benefit Considerations

- Water Costs (assumed to be water costs associated with irrigation reduction/potable water savings, and water pumping costs)
- Energy Savings (especially energy reduction from shading)
- Operation & Maintenance (assumed to include maintenance required for continued functionality of GI).
- A distribution of costs, benefits and possible outcomes as described by the following factors.
 - Direct Financial Return on Investment
 - Sustainable Return on Investment

Methodology – Risk Analysis Approach

- Reflecting the range of uncertainty about inputs as well as their most likely values.
- A probability distribution representing the outcome of future events, based on limited information.
- Input into a Monte Carlo risk analysis following a cost-benefit approach.

Outcomes

- Evaluation of usability and usefulness of the AutoCASE[™] and applicability of the data used.
- A description of Envision scoring of GI/LID features to articulate the link between GI/LID and Envision.
- An evaluation on the possible use by the City and County for the Envision[™] System to assess GI/LID practices.

Findings

- GI/LID features (best management practices) added to the conventional design provide multiple high impact social benefits on both sites analyzed
 - Commercial Site
 - Road Re-Design

Downtown Links: Project Site Before the construction

After the construction

Downtown Links: LID/GI Features

- Infiltration Basins
- Pervious Concrete
- Trees
- Shrubs

Downtown Links: LID/GI Features

• Pervious Concrete

Downtown Links: Feature Results

Downtown Links: Net Present Value (NPV)

- Financial NPV: Costs and benefits that involve cash flows
- Sustainable NPV: Monetized value of social and environmental impacts in addition to cash flows

Downtown Links: Net Present Value (NPV)

Downtown Links: Costs and Benefits

Cost/Benefit	Mediam Net Present Value
Carbon Reduction by Vegetation	\$47,914 Largest Benefit
Heat Island Effect	\$30,669
Air Pollution Reduced by Vegetation	\$28,816
Flood Risk	\$12,504
Property Value	\$10,477
Water Costs	\$8,679
Shadow Wage	\$318
Carbon Emissions from Energy Use	\$112
Air Pollution from Energy Use	\$84
Replacement Costs	-\$27,354
Operations and Maintenance	-\$30,883
Capital Expenditures	-\$36,194 Largest Cost

Downtown Links: Stakeholder Value

Direct Financial Government Community Environment

Downtown Links: Envision Value

Benefits of GI/LID Features Quantified and Monetized:

- Adding GI/LID features to the commercial and road re-design sites provides net benefits to the Tucson region
- Largest benefits: heat related mortality, traffic calming, flooding, reduced water costs and reduced air pollution

Overall Findings

- GI/LID features have a payback to governments, the environment, the economy and the community
- This approach allows all stakeholder groups to understand how they are affected by a project
 - "What's in it for me?"
- Ignoring benefits of GI/LID features can lead to incorrect decisions

Recommendations

- The City of Tucson, Pima County, should continue to use this approach to demonstrate the full value of its GI/LID initiatives
- This information should be used to help make the best decisions as projects are planned and designs are modified
- The Tucson region should consider the use of Envision to communicate project benefits to outside stakeholders

The Value of Green Infrastructure

Fort Worth, TX

Sustainable Return on Investment (S-ROI) Analysis Application

Fort Worth, Texas

A better future, by design. www.verdunity.com

Mikel Wilkens, PE, ENV-SP, Environmental/Sustainability Program Manager VERDUNITY mwilkins@verdunity.com @verdunity

Applications in Fort Worth

- 1) Evaluating and aligning public and private investment for development TRVA Panther Island Project Case Study
- Tying capital improvement project prioritization to the City's strategic goals and comprehensive plan Stormwater Management Program
- Refining the scope and evaluating design options for stormwater infrastructure projects
 Central Arlington Heights Neighborhood/Stormwater Improvements

Trinity River Authority

Panther Island Development

Trinity River Authority Panther Island Development

Public Infrastructure Project for Flood Protection and Access

Potential Private Investment as a Result

Trinity River Authority

Panther Island Development

Looking south down Main Street toward downtown

Business Case Evaluation

LID Implementation Levels for Panther Island

Prepared for: Trinity River Vision Authority Prepared by: Verdunity, Taxas Registered Engineering Firm F-13496 Mikel Wilkins, PE, ENV-SP, Sustainability Program Manager December 10, 2013

Making the business case for LID

Primary Questions

1) What is the economic case for additional initial investment in low impact development?

2) What is the return on investment for:a) the Cityb) the developerc) the region?

Traditional Design

- No green infrastructure
- Water quality addressed structurally

Incremental Levels of LID Implementation Evaluated

Incremental Levels of LID Implementation Evaluated

Right-of-Way Option

 Bioretention to replace all street trees

Traditional Design

Right-of-Way Option

open spaces

canals

Open Space Option

Incremental Levels of LID Implementation Evaluated

Incremental Levels of LID Implementation Evaluated

Traditional Design

Right-of-Way Option

Open Space Option

Architectural Option

- Private implementation of green roofs
- Assumes 25% green roof coverage

Evaluating LID Options

Costs Evaluated

Probable Construction Costs

- 8-Yr construction period
- 50-Yr operational period

O&M Costs

• Typical costs from EPA

Evaluating LID Options

Property Value Worksheet

	Right-of-Way Response	Open Space Response
Total Residential Units	10,500	10,500
Average Value of Residential Unit (Non - LID Development)	\$155,000	\$155,000
LID Benefits:		
Number of Units Affected	2,100	4,200
Estimated Value Increase	3.36%	3.36%
Total Value Increase	\$10,936,800	\$21,873,600
50% Rule	-\$5,468,400	-\$10,936,800
Total Value Added By LID	\$5,468,400	\$10,936,800
NPV	\$2,919,692	\$5,717,190

Economic Benefits

Sales Tax

- Estimated 2-4% Increase
- Base values from Economic and Fiscal Impacts of the Corps of Engineers' Trinity River Vision Project (UNT 2005)
- Conservative estimate based on prior studies

Property Values

 Estimated 3.36% Increase based on 10,500 residential units with an average value of \$150-160k

Evaluating LID Options

Environmental and Social Benefits

Water Quality Improvements

• Based largely on Willingness-To-Pay studies conducted by USACE and others

CO₂ and Air Pollution Reduction

• Based on US Forest Service estimates for pollutant removal

Evaluating LID Options

Capital Expenditures

Capital Expenditure	Traditional	Right-of-Way Response	Open Space Response
Rain Gardens	\$0	\$1,376,250	\$2,935,944
Hydrodynamic Structures	\$1,700,000	\$850,000	\$850,000
Grey Components	\$6,511,000	\$5,768,504	\$5,631,056
Total	\$8,211,000	\$7,994,754	\$9,417,000

Example inputs and analysis results

Funding Information			
Primary Entity Served	Municipality		
Taxes	15%		
Grants/Donations	5%		
Equity	30%		
Nominal Rate of Return for Equity	10%		
Debt	50%		
Debt Financing Term Length	30 years		
Rate of Interest for Debt Financing	4%		
Weighted Average Cost of Capital	4.7%		

Evaluating LID Options

Example inputs and analysis results

	Right-of-Way Response	Open Space Response
Costs:		
Capital	(-\$216,246)	\$1,206,000
Operations and Maintenance	\$202,412	\$442,325
Total	(-\$13,834)	\$1,648,325
Benefits:		
State/Local Sales Tax	\$290,383	\$580,767
Water Quality	\$298,665	\$371,184
Residential Property Tax (City/County)	\$2,919,612	\$5,717,190
CO2 Emissions	-	\$142,858
Air Pollution	_	\$199,981
Total	\$3,460,785	\$7,011,980
Net (Benefits - Cost)	\$3,474,619	\$5,363,655

Evaluating LID Options

The Right-of-Way and Open Space options both showed positive returns over the Traditional approach. Impact of LID Implementation Scenarios on Property Values and Tax Revenues

	Right-of-Way Response	Open Space Response
Total Residential Units	10,500	10,500
Average Value of Residential Unit (Non - LID Development)	\$155,000	\$155,000
LID Benefits:		
Number of Units Affected	2,100	4,200
Estimated Value Increase	3.36%	3.36%
Total Value Increase	\$10,936,800	\$21,873,600
50% Rule	-\$5,468,400	-\$10,936,800
Total Value Added By LID	\$5,468,400	\$10,936,800
NPV	\$2,919,692	\$5,717,190

CIP Prioritization and Design Refinement

Central Arlington Heights Neighborhood

Central Arlington Heights Neighborhood

Collinwood Avenue Greet Street

Central Arlington Heights Neighborhood

Collinwood Avenue Greet Street

		99.0%						S-NPV Financial NP
FINANCIAL NPV	\$40,031			/				
SUSTAINABLE NPV	\$309,337	80.0%						
TOTAL BENEFITS	\$673,740	60.0%						
TOTAL COSTS	(\$374,083)	°5 A∰ 40.0%						
BENEFIT COST RATIO	1.8	Probab						
DISCOUNTED PAYBACK PERIOD	41 Years	20.0%						
REDUCED FLOOD DAMAGES	\$0	-\$10	0,000 \$0	\$100,000	\$200,000 \$30 Net Present Value (0,000 \$400, NPV)	000 \$500,0	0 \$600,000
AIR POLLUTION REDUCTION	\$35,980							
CARBON EMISSIONS SEQUESTRATION	\$60,254							
HEAT ISLAND EFFECT MITIGATION	\$1,050							
RECREATIONAL USE	\$9,796							
FLOOD RISK MITIGATION	\$0*		Co	ollinwo	od Ave	enue G	ireet S	Street
PROPERTY VALUE UPLIFT	PROPERTY TAX REVEN	IUE ES						
REPLACEMENT COSTS	(\$94,045)							
OPERATIONS AND MAINTENANCE	(\$60,755)							
REVENUES	\$411,886							

Central Arlington Heights Neighborhood

Conveyance and Surface Detention Alternative Evaluation

								S-NPV	/ 🔵 Financial I	NPV
FINANCIAL NPV	\$7,392,530	99.0%								
SUSTAINABLE NPV	\$7,844,611	80.0%								
TOTAL BENEFITS	\$27,738,405	₩ ₩ 60.0%			/					
TOTAL COSTS	(\$19,908,238)	y of a Lc								
BENEFIT COST RATIO	1.39	40.0%								
DISCOUNTED PAYBACK PERIOD	52 Years	د 20.0%								
REDUCED FLOOD DAMAGES	\$27,300,000	0.0%								
AIR POLLUTION REDUCTION	\$265,796	\$7,400,000 \$7,	,500,000 \$7,600,000	\$7,700,000	\$7,800,000 \$7,9 Net Present Value (NPV	00,000 \$8,000	0,000 \$8,10	0,000 \$8	3,200,000	\$8,300,000
CARBON EMISSIONS SEQUESTRATION	\$5,041									
HEAT ISLAND EFFECT MITIGATION	\$47,344									
RECREATIONAL USE	\$55,866		Co	onveva	ance a	nd Su	rface	<u>)</u>		
FLOOD RISK MITIGATION	\$24,388*								-+:-	
PROPERTY VALUE UPLIFT	\$12,551		D	etenti	on Alte	ernati	ve E	/aiu	atio	n
REPLACEMENT COSTS	(\$521,382)									
OPERATIONS AND MAINTENANCE	(\$30,345)									
REVENUES	(\$762,820)									

Sustainable Return on Investment (S-ROI) Analysis Application

Fort Worth, Texas

A better future, by design. www.verdunity.com

Mikel Wilkens, PE, ENV-SP, Environmental/Sustainability Program Manager VERDUNITY mwilkins@verdunity.com @verdunity

The Value of Green Infrastructure

Los Angeles, CA

IIImpact Infrastructure

The Study

Context Multi-agency interest in Green Infrastructure

Question How can various agencies plan GI projects strategically?

Hypothesis New modeling workflows can provide decision support

This Study CH2M piloted workflow on an CA urban works yard site

Design with GSI

Green Stormwater Infrastructure

Name:SiteSubarea:SDA1 • Infiltration/CaptureParent:SDA1Cover / Soil:Impervious Cover • A •Area:0 sf

Define 0 Selected

-

Results Site -

Site (C: 0.9) | Area: 325395(269825) Infiltration (C: 0.9) | Area: 6723 Parking1 (C: 0.9) | Area: 37503(37016) Building2 (C: 0.9) | Area: 486 Driveway1 (C: 0.9) | Area: 621 Driveway2 (C: 0.9) | Area: 560 Landscape1 (C: 0.9) | Area: 1631 Total Area: **325924**

Runoff Volume

0.00"

Suggested BMP Area	15%
Retained Volume	1.01"
Filtered Volume	0.00"
Impervious	85%

AutoCASE

Cost/Benefit	Value	95% Confidence Interval
Shadow Wage 📀	\$48,845	\$12,625 to \$115,278
Property Value 📀	\$43,295	\$25,128 to \$62,742
Flood Risk 🥹	\$41,675	\$13,735 to \$454,718
Heat Island Effect 💡	\$15,534	\$9,233 to \$23,719
Air Pollution by ∨egetation	\$9,384	\$5,846 to \$13,824

Existing Site Conditions

• 7.5 Acres

• 98% Impervious

• 1.12" Storm Event

BMP	Tributary Area (ac)	% of Total Area
Bioretention	0.06	1%
Permeable Pavement	0.93	12%
Infiltration	6.48	87%
Total	7.47	

BMP	Tributary Area (ac)	% of Total Area
Bioretention w/ Underdrain	0.06	1%
Permeable Pavement w/ Underdrain	0.93	12%
Sand Filter	6.48	87%
Total	7.47	

BMP	Tributary Area (ac)	% of Total Area
Bioretention	1.34	18%
Permeable Pavement	0.07	1%
Infiltration	6.06	81%
Total	7.47	

Scenario 4: Hybrid Infiltration

Positive S-NPV

Top 4 Benefits:

- 1. Water Quality
- 2. Flood Risk
- 3. Groundwater Value
- 4. Property Values

Difference in LCC \$30,000

Scenario 4: Hybrid Infiltration

Incremental Analysis

Cast/Danafit Catagory		Cooperio 1		Connection 4			
LostrBenerit Lategory		Scenario I		Scenario 4			
Property Value	\$	46,574	\$	11,115			
Flood Risk	\$	296,159	\$	248,637			
Air Pollution by Vegetation	\$	527	\$	524			
Heat Island Effect	\$	2,357	\$	9,893			
Shadow Wage	\$	5,918	\$	4,029			
Carbon Emissions by Vegetation	\$	32	\$	32			
Water Quality	\$	343,087	\$	346,521			
Value of Increased Groundwater	\$	68,277	\$	69,583			
Reduced MWD Water Costs	\$	41,994	\$	42,798			
Reduced O&M on Additional Detention	\$	3,736	\$	4,657			
Reduced O&M on Additional Piping	\$	5,609	\$	4,484			
Energy Savings	\$	-	\$	-	_		
Replacement Costs	\$	(153,829)	\$	(148,103)	Ε.		
Operations and Maintenance	\$	(238,275)	\$	(227,013)	8	31	ž
Capital Expenditure	\$	(567,743)	\$	(323,417)	2	=	<u> </u>
Life-Cycle Cost Analysis	\$	(959,847)	\$	(698,533)			
FROI Net Present Value	\$	(908,507)	\$	(646,594)			
SROI Net Present Value	\$	(145,577)	\$	43,740			

Discounted Costs and Benefits

Scenario 4 has a positive S-NPV. Best option for building now.

Full Replacement Analysis

Cost/Benefit Category		Scenario 1	Scenario 4			
Property Value	\$	46,574	\$ 11,104			
Flood Risk	\$	296,159	\$ 248,637			
Air Pollution by Vegetation	\$	527	\$ 527			
Heat Island Effect	\$	2,357	\$ 9,898			
Shadow Wage	\$	4,474	\$ 3,785			
Carbon Emissions by Vegetation	\$	32	\$ 32			
Water Quality	\$	343,087	\$ 346,521			
Value of Increased Groundwater	\$	68,277	\$ 69,583			
Reduced MWD Water Costs	\$	41,994	\$ 42,798			
Reduced O&M on Additional Detention	\$	3,736	\$ 4,657			
Reduced O&M on Additional Piping	\$	5,609	\$ 4,484			
Energy Savings	\$	-	\$ -	_		
Replacement Costs	\$	(153,829)	\$ (148,103)	Η.		
Operations and Maintenance	\$	(238,275)	\$ (227,017)	8	31	涝
Capital Expenditure	\$	(353,783)	\$ (293,979)	A S	=	<u> </u>
Life-Cycle Cost Analysis	\$	(745,887)	\$ (669,099)			
FROI Net Present Value	\$	(694,547)	\$ (617,160)			
SROI Net Present Value	- \$	66,939	\$ 72,927			

Both have a **positive S-NPV**. S-NPV higher if wait until replacement.

Conclusion

Whether decision is to build now or wait, **the best option is the hybrid scenario**

Rank	Scenario	Analysis	SROI	LCC
1	Hybrid	Full Replacement	\$73,000	-\$669,000
2	Scenario 1	Full Replacement	\$67,000	-\$746,000
3	Hybrid	Incremental	\$44,000	-\$699,000
4	Scenario 1	Incremental	-\$145,000	-\$960,000
5	Scenario 3	Full Replacement	-\$1,979,000	-\$2,688,000
6	Scenario 3	Incremental	-\$2,572,000	-\$3,286,000
7	Scenario 2	Full Replacement	-\$3,006,000	-\$3,467,000
8	Scenario 2	Incremental	-\$3,219,000	-\$3,681,000

Conclusion

Whether decision is to build now or wait, **the best option is the hybrid scenario**

Rank	Scenario	Analysis	SROI	LCC
1	Hybrid	Full Replacement	\$73,000	-\$669,000
2	Scenario 1	Full Replacement	\$67,000	-\$746,000
5	Scenario 3	Full Replacement	-\$1,979,000	-\$2,688,000
7	Scenario 2	Full Replacement	-\$3,006,000	-\$3,467,000
3	Hybrid	Incremental	\$44,000	-\$699,000
4	Scenario 1	Incremental	-\$145,000	-\$960,000
6	Scenario 3	Incremental	-\$2,572,000	-\$3,286,000
8	Scenario 2	Incremental	-\$3,219,000	-\$3,681,000

Q&A

John Parker, Impact Infrastructure Mikel Wilkens, VERDUNITY John Wise, Stantec

Engineering Optimal Financial, Social, And Environmental Returns

III Impact Infrastructure

