EVALUATING LOW IMPACT DEVELOPMENT BEST MANAGEMENT PRACTICES AS AN ALTERNATIVE TO TRADITIONAL URBAN STORMWATER MANAGEMENT

Brandon Holzbauer-Schweitzer Region 6 Stormwater Conference 10/05/2016

Introduction

Study Site

Methodology

Hypothesis and Objectives

2

- Why is this study important?
 - Urban land use is increasing in the Lake Thunderbird watershed
 - Lake Thunderbird is listed as 303 (d) impaired waterbody
- Implementation of Low Impact Development (LID) Best Management Practices (BMPs) is an alterative stormwater management approach
- Trailwoods sampling has been completed in two phases

- Why is this study important?
 - Urban land use is increasing in the Lake Thunderbird watershed
 - Lake Thunderbird is listed as 303 (d) impaired waterbody
- Implementation of Low Impact Development (LID) Best Management Practices (BMPs) is an alterative stormwater management approach
- Trailwoods sampling has been completed in two phases

- Why is this study important?
 - Urban land use is increasing in the Lake Thunderbird watershed
 - Lake Thunderbird is listed as 303 (d) impaired waterbody
- Implementation of Low Impact Development (LID) Best Management Practices (BMPs) is an alterative stormwater management approach
- Trailwoods sampling has been completed in two phases

URBANIZATION IMPACTS STORMWATER QUALITY

		Increased	Increased Resulting Impacts				
		imperviousness leads to:	Flooding	Habitat loss	Erosion	Channel widening	Streambed alteration
		Increased volume	Х	Х	Х	Х	Х
		Increased peak flow	Х	Х	Х	Х	Х
		Increased peak flow duration	Х	Х	Х	Х	Х
		Increased stream temperature		Х			
		Decreased base flow		Х			
		Changes in sediment	Х	Х	Х	Х	Х
mpervious Level	Effect	loadings			Environ	mental Protection Age	1997
10%	Degraded water quali	ty			"Urbani Impacts	zation and Streams s," EPA 841-R-97-008.	tudies of Hydrologic
25%	Inadequate fish and insect hal with shoreline and stream chan	oitat along nel erosion					
35-50%	Runoff equals 30% of rainfal	Volume Kloss, C., and Cala	russe, C., 2006. "F	Rooftops to Ri	vers: Green Strat	egies	
>75%	Runoff equals 55% of rainfal	I volume University of Maryla	Council, Low Imp nd School of Publ	act Developm lic Policy.	ient Center, and		

URBANIZATION IMPACTS STORMWATER QUALITY

		Incr	reased Resulting Impacts					
		Impervious t	sness leads :o:		Habitat loss			Streambed alteration
		Increase	ed volume		X	Х	Х	Х
			l peak flow					Х
		Increased dur	l peak flow ation	Х	Х	Х	Х	Х
		Increase temp	ed stream erature		Х			
		Decrease	d base flow		Х			
Matanaka d		Changes i	in sediment					
watersned Impervious Level	Effect		ungs			Enviror	mental Protection Age	1997
10%	Degraded water quali	ty				"Urbani Impacts	zation and Streams s," EPA 841-R-97-008.	tudies of Hydrologic
25%	Inadequate fish and insect ha with shoreline and stream char	bitat along Inel erosion						
35-50%	Runoff equals 30% of rainfal	ll volume	Kloss, C., and Calar for Controlling Storm	usse, C., 2006. "F water and Comb	Rooftops to Ri	vers: Green <i>S</i> trat verflows." Natura	/ egies I	
>75%	Runoff equals 55% of rainfal	ll volume	Resources Defense University of Maryla	Council, Low Imp nd School of Publ	act Developm ic Policy.	ent Center, and		8

EVALUATING TRADITIONAL STORMWATER MANAGEMENT

- Typically consists of:
 - Curb and gutter collection systems
 - Drains and storm sewer conveyances
 - Detention and retention ponds
- Divert stormwater runoff from urban areas as quickly as possible
- Addresses only water <u>quantity</u> and pays no attention to water <u>quality</u>

EVALUATING TRADITIONAL STORMWATER MANAGEMENT

- ► Typically consists of:
 - Curb and gutter collection systems
 - Drains and storm sewer conveyances
 - Detention and retention ponds
- Divert stormwater runoff from urban areas as quickly as possible
- Addresses only water <u>quantity</u> and pays no attention to water <u>quality</u>

EVALUATING TRADITIONAL STORMWATER MANAGEMENT

- Typically consists of:
 - Curb and gutter collection systems
 - Drains and storm sewer conveyances
 - Detention and retention ponds
- Divert stormwater runoff from urban areas as quickly as possible
- Addresses only water <u>quantity</u> and pays no attention to water <u>quality</u>

STORMWATER RUNOFF DEGRADES SURFACE WATER BODIES

Rivers and Streams

- ► 3271 miles "good" water
- 10627 miles "impaired" water
 2014 Oklahoma Lotic Assessment

Oklahoma Lotic Waters Assessed

Lakes, Ponds, and Reservoirs

- 101717 acres "good" water
- 498773 acres "impaired" water
 2014 Oklahoma Lentic Assessment

Oklahoma Lentic Waters Assessed

STORMWATER RUNOFF DEGRADES SURFACE WATER BODIES CONTINUED

Possible Causes of Impairment			
	Lotic (miles)	Lentic (acres)	
Algal Growth		70500	
Ammonia	46		
Nutrients	160	29350	
Dissolved Oxygen Depletion	2110	155900	
Pathogens	7800	21000	
Turbidity	2700	366000	

Environmental Protection Agency. 2016b, "Oklahoma water quality assessment report," Retrieved July 2, 2016, from (https://ofmpub.epa.gov/waters10/attains_s tate.control?p_state=OK#total_assessed_ waters).

Possible Sources of Impairment		
	Lotic (miles)	Lentic (acres)
Agricultural	8150	34150
Urban Stormwater	7225	17500
Unknown	10150	500000

STORMWATER RUNOFF DEGRADES SURFACE WATER BODIES CONTINUED

	Lotic (miles)	Lentic (acres)	
Algal Growth		70500	
Ammonia	46		
Nutrients	160	29350	
Dissolved Oxygen Depletion		155900	
Pathogens	7800	21000	
Turbidity	2700	366000	

Environmental Protection Agency. 2016b, "Oklahoma water quality assessment report," Retrieved July 2, 2016, from (https://ofmpub.epa.gov/waters10/attains_s tate.control?p_state=OK#total_assessed_ waters).

Possible Sources of Impairment				
	Lotic (miles) Lentic (acres			
Agricultural	8150	34150		
Urban Stormwater	7225	17500		
Unknown	10150	500000		

LID BMP BACKGROUND

LID BMPs are relatively new concepts developed in the early 1990's

► Goal:

- Treat the water as close to where it falls as possible
- LID BMPs attempt to model natural processes and simulate predevelopment hydrology

LID BMP BACKGROUND

LID BMPs are relatively new concepts developed in the early 1990's

► Goal:

- Treat the water as close to where it falls as possible
- LID BMPs attempt to model natural processes and simulate predevelopment hydrology

LID BMP BACKGROUND

LID BMPs are relatively new concepts developed in the early 1990's

► Goal:

- Treat the water as close to where it falls as possible
- LID BMPs attempt to model natural processes and simulate pre-development hydrology

LID BMPS PURPOSE

 Ecosystems are defined by a complex set of interactions between plants, animals, microorganisms, humans, and the non-living environment

Evaluation is necessary to document:

- How changes in ecosystem services impact human well-being
- How changes to ecosystems may affect future generations
- What modifications can be made at various scales to improve ecosystem management and drive sustainability

Ecosystems are defined by a complex set of interactions between plants, animals, microorganisms, humans, and the non-living environment

Evaluation is necessary to document:

- How changes in ecosystem services impact human well-being
- How changes to ecosystems may affect future generations
- What modifications can be made at various scales to improve ecosystem management and drive sustainability

Functions	Processes and Components	Goods and Services
Regulating	Maintenance of essential ecological processes	
Water regulation	Role of land cover in regulating runoff and river discharge	Drainage and natural irrigation
Nutrient regulation	Role of biota in storage and recycling nutrients	Maintenance of productive ecosystems
Supporting	Providing habitat for plant and animal species	
Nursery	Suitable reproductive habitat	Hunting; Gathering; Aquaculture
Provisioning	Provisioning of natural resources	
Food and Water	Conversion of solar energy into edible plants and animals; purification and storage of water	Fuel and Energy
Cultural	Providing opportunities for cognitive development	
Science and education	Variety in nature with scientific and educational values	Use of nature of education and research

Functions	Processes and Components	Goods and Services
Regulating	Maintenance of essential ecological processes	
Water regulation	Role of land cover in regulating runoff and river discharge	Drainage and natural irrigation
Nutrient regulation	Role of biota in storage and recycling nutrients	Maintenance of productive ecosystems
Nursery	Suitable reproductive habitat	Hunting; Gathering; Aquacultur
Provisioning	Provisioning of natural resources	
Food and Water	Conversion of solar energy into edible plants and animals; purification and storage of water	Fuel and Epergy
Cultural	Providing opportunities for cognitive development	
Science and education	Variety in nature with scientific and educational values	Use of nature of education and research

HYPOTHESES AND OBJECTIVES

HYPOTHESES

Utilization of LID BMPs will demonstrate a difference in the total volume of stormwater runoff generated and the peak volumetric discharge rate for any given storm event

- Implementation of LID BMPs will demonstrate a difference in urban stormwater runoff pollutant concentrations and loads for ammonia-nitrogen, nitrate-nitrogen, total nitrogen, total dissolved phosphorus, total phosphorus, trace metals, and total suspended sediment
- Employment of LID BMPs for urban stormwater management will provide ecosystem services (compared to traditional stormwater management) that car result in long term economic benefits

HYPOTHESES

- Utilization of LID BMPs will demonstrate a difference in the total volume of stormwater runoff generated and the peak volumetric discharge rate for any given storm event
- Implementation of LID BMPs will demonstrate a difference in urban stormwater runoff pollutant concentrations and loads for ammonia-nitrogen, nitrate-nitrogen, total nitrogen, total dissolved phosphorus, total phosphorus, trace metals, and total suspended sediment
- Employment of LID BMPs for urban stormwater management will provide ecosystem services (compared to traditional stormwater management) that can result in long term economic benefits

HYPOTHESES

- Utilization of LID BMPs will demonstrate a difference in the total volume of stormwater runoff generated and the peak volumetric discharge rate for any given storm event
- Implementation of LID BMPs will demonstrate a difference in urban stormwater runoff pollutant concentrations and loads for ammonia-nitrogen, nitrate-nitrogen, total nitrogen, total dissolved phosphorus, total phosphorus, trace metals, and total suspended sediment
- Employment of LID BMPs for urban stormwater management will provide ecosystem services (compared to traditional stormwater management) that can result in long term economic benefits

OBJECTIVES

 Collect storm-event derived stormwater runoff <u>quantity data</u> from treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

Collect storm-event derived stormwater runoff <u>quality data</u> from treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

Investigate the differences in economic benefits derived from ecosystem services between treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

OBJECTIVES

Collect storm-event derived stormwater runoff <u>quantity data</u> from treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

 Collect storm-event derived stormwater runoff <u>quality data</u> from treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

Investigate the differences in economic benefits derived from ecosystem services between treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

OBJECTIVES

 Collect storm-event derived stormwater runoff <u>quantity data</u> from treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

 Collect storm-event derived stormwater runoff <u>quality data</u> from treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

Investigate the differences in economic benefits derived from ecosystem services between treatment (incorporating LID BMP stormwater management practices) and control (incorporating traditional stormwater management practices) watersheds of similar size and residential land use

STUDY SITE

STUDY SITE

STUDY SITE DESIGN

- ► 51 Diversion downspouts
- ► 17 Rain barrels
- ► 18 Rain gardens
- ► 1 Strip of permeable pavement

- Paired watershed study
- Each watershed was implemented with a trapezoidal flume $Q(cfs) = 2.853[(level + 0.13558)^{2.497}]$
- Flow weighted composite samples were collected with an ISCO 6712 Portable Sampler paired with an ISCO 730 Bubbler Module to measure flow
- Analyzed for laboratory parameters

	Onits	Metrous
Total suspended solids	mg/L	PA 160.2 (1999
	mg/L	

- Paired watershed study
- Each watershed was implemented with a trapezoidal flume $Q(cfs) = 2.853[(level + 0.13558)^{2.497}]$
- Flow weighted composite samples were collected with an ISCO 6712 Portable Sampler paired with an ISCO 730 Bubbler Module to measure flow
- Analyzed for laboratory parameters

Parameter		Meth
Total suspended solids	mg/L	ÉPA 160
	mg/L	
		FPA 6010

- Paired watershed study
- Each watershed is implemented with a trapezoidal flume $Q(cfs) = 2.853[(level + 0.13558)^{2.497}]$
- Flow weighted composite samples were collected with an ISCO 6712 Portable Sampler paired with an ISCO 730 Bubbler Module to measure flow
- Analyzed for laboratory parameters

Parameter		Methods
Total suspended solids	mg/L	ZPA 160.2 (1999)
	mg/L	
		EPA 3015 (1994) and

- Paired watershed study
- Each watershed is implemented with a trapezoidal flume $Q(cfs) = 2.853[(level + 0.13558)^{2.497}]$
- Flow weighted composite samples were collected with an ISCO 6712 Portable Sampler paired with an ISCO 730 Bubbler Module to measure flow

Daramotor

Analyzed for laboratory parameters

	Onits	Methods
Total suspended solids	mg/L	EPA 160.2 (1999)
Total nitrogen	mg/L	HACH TNT 10071
Ammonia-nitrogen	mg/L	HACH TNT 10031
Nitrate-nitrogen	mg/L	EPA 352.1 (1971)
Total phosphorus	mg/L	EPA 365.3 (1978)
Total dissolved phosphorus	mg/L	EPA 365.3 (1978)
Total metals	mg/L	EPA 3015 (1994) and
		EPA 6010C (2000)

Unite

Mothode

COMPOSITE SAMPLING REGIME

ECOSYSTEM SERVICES: PROVISIONING

Assumptions

- Runoff percentage
- Roof percent drainage
- Precipitation events > 0.24 inches completely filled the rain barrels
- Precipitation events < 0.24 inches partially filled the rain barrels</p>
- Residents used the captured water

Steps

- Determine quantity and size present
- Determine percent of roof draining into rain barrels
- Calculate event magnitude and frequency
- Determine value/gallon of potable water
- Calculate values of rain barrels (USD Household⁻¹ Year⁻¹)

ECOSYSTEM SERVICES: PROVISIONING

Assumptions

- Runoff percentage
- Roof percent drainage
- Precipitation events > 0.24 inches completely filled the rain barrels
- Precipitation events < 0.24 inches partially filled the rain barrels</p>
- Residents used the captured water

Steps

- Determine quantity and size present
- Determine percent of roof draining into rain barrels
- Calculate event magnitude and frequency
- Determine value/gallon of potable water
- Calculate values of rain barrels (USD Household⁻¹ Year⁻¹)

ECOSYSTEM SERVICES: FLOOD ATTENUATION

Assumptions

- Stormwater pond optimally sized and designed
- ► All stormwater was converted into runoff
- Operation and maintenance cost was 4 percent of the capital cost
- Design parameters: HRT and Depth

Step	Task
1	Total discharge rate difference
2	Design storm and subsequent design for event
3	HRT assumption
4	Depth assumption
5	
6	
7	Calculate surface area required
8	Determine land costs
9	Calculate construction costs
10	Calculate operation and maintenance costs 42

ECOSYSTEM SERVICES: FLOOD ATTENUATION

Assumptions

- Stormwater pond optimally sized and designed
- All stormwater was converted into runoff
- Operation and maintenance cost was 4 percent of the capital cost
- Design parameters: HRT and Depth

Step	Task
1	Total discharge rate difference
2	Design storm and subsequent design for event
3	HRT assumption
4	Depth assumption
5	Calculate pond volume
6	Input into cost equations
7	Calculate surface area required
8	Determine land costs
9	Calculate construction costs
10	Calculate operation and maintenance costs 43

ECOSYSTEM SERVICES: NUTRIENT RETENTION

Assumptions

- No costs incurred besides LID BMP costs
- Cost data provided by Coffman (2014)
- ► Two laborers and one supervisor
- ► 37 days for installation
- Revenue generated was constant for study duration
- Only two sources of revenue exist
- Steps
 - Determine discount rates
 - Calculate the net present value
 - Calculate the annuity rate
 - Calculate the equivalent annual cost
 - Calculate cost effectiveness (USD Year⁻¹ one percent change⁻¹ and X percent change Year⁻¹ USD⁻¹)

ECOSYSTEM SERVICES: NUTRIENT RETENTION

Assumptions

- No costs incurred besides LID BMP costs
- Cost data provided by Coffman (2014)
- Two laborers and one supervisor
- ► 37 days for installation
- Revenue generated was constant for study duration
- Only two sources of revenue exist

Steps

- Determine discount rates
- Calculate the net present value
- Calculate the annuity rate
- Calculate the equivalent annual cost
- Calculate cost effectiveness (USD Year⁻¹ one percent change⁻¹ and X percent change Year⁻¹ USD⁻¹)

RESULTS AND DISCUSSION: WATER QUANTITY AND QUALITY

SUMMARIZED RESULTS

Precipitation Data

	# of overte		10		
	# Or events		10		
Study period			05/22-09/20 2015		
Precipitation magnitude Ranges			0.34-3.99 inches (mean = 1.39)		
Precipitation intensity ranges			0.48-2.64 inches hour ⁻¹ (mean = 1.31)		
2014 total precipitation			21.63 inches		
05/2015 total precipitation			23.39 inches		
2015 total precipitation			63.22 inches		
Norman Mesonet station average			34.67 inches		
Total Runoff Volume (C			Peak Discharge Rate (CFS)		
	Total Runo	ff Volume (CF)	Peak Disch	arge Rate (CFS)	
	Total Runo TE (Control)	ff Volume (CF) TW(Treatment	Peak Dischation: TE (Control)	arge Rate (CFS) TW (Treatment)	
Mean	Total Runo TE (Control) 11053	ff Volume (CF) TW(Treatment 8126	Peak Discha) TE (Control) 2.62	arge Rate (CFS) TW (Treatment) 1.38	
Mean Median	Total Runo TE (Control) 11053 4217	ff Volume (CF) TW(Treatment 8126 4700	Peak Discha) TE (Control) 2.62 0.80	arge Rate (CFS) TW (Treatment) 1.38 0.67	
Mean Median Maximum	Total Runo TE (Control) 11053 4217 42700	ff Volume (CF) TW(Treatment 8126 4700 24500	Peak Discha) TE (Control) 2.62 0.80 9.93	arge Rate (CFS) TW (Treatment) 1.38 0.67 5.13	

RELATIONSHIP BETWEEN PRECIPITATION AND DISCHARGE

TOTAL RUNOFF VOLUMES AND PEAK DISCHARGE RATES WERE DIFFERENT

TOTAL RUNOFF VOLUMES AND PEAK DISCHARGE RATES WERE DIFFERENT

TOTAL RUNOFF VOLUME DIFFERENCES

PEAK DISCHARGE DIFFERENCES

NUTRIENT CONCENTRATIONS WERE DIFFERENT

NUTRIENT CONCENTRATIONS WERE DIFFERENT

PHOSPHORUS CONCENTRATIONS WERE HIGHER

MASS LOADING RATES TRACKED CONCENTRATIONS

RESULTS AND DISCUSSION: ECOSYSTEM SERVICES

VALUE WAS PROVIDED BY RAIN BARRELS

LID BMPS PROVIDED VALUE THROUGH FLOOD ATTENUATION

NUTRIENT RETENTION AS A MONETARY METRIC (USD YEAR⁻¹ ONE PERCENT CHANGE⁻¹)

NUTRIENT RETENTION AS A MONETARY METRIC (X PERCENT CHANGE YEAR⁻¹ USD⁻¹)

LID BMPs significantly decreased peak discharge rates (p = 0.040), when comparing TE (Control) to TW (Treatment)

- Total runoff volumes showed no significant differences between the two sub-basins even though 25 percent less water passed through TW (Treatment) compared to TE (Control)
- ► Nitrate-nitrogen concentrations were significantly different (p = 0.01) between sub-basins
- Ecosystem services provided by LID BMPs did provide the TW (Treatment) sub-basin with long term economic benefits which over time could outweigh the capital costs of construction
- In conclusion, the data collected represent a highly variable manmade system in which LD BMPs do provide beneficial water quantity and quality functions, as well as economic alternatives to traditional stormwater management

- LID BMPs significantly decreased peak discharge rates (p = 0.040), when comparing TE (Control) to TW (Treatment)
- Total runoff volumes showed no significant differences between the two sub-basins even though 25 percent less water passed through TW (Treatment) compared to TE (Control)
- ► Nitrate-nitrogen concentrations were significantly different (p = 0.01) between sub-basins
- Ecosystem services provided by LID BMPs did provide the TW (Treatment) sub-basin with long term economic benefits which over time could outweigh the capital costs of construction
- In conclusion, the data collected represent a highly variable manmade system in which LII BMPs do provide beneficial water quantity and quality functions, as well as economic alternatives to traditional stormwater management

- LID BMPs significantly decreased peak discharge rates (p = 0.040), when comparing TE (Control) to TW (Treatment)
- Total runoff volumes showed no significant differences between the two sub-basins even though 25 percent less water passed through TW (Treatment) compared to TE (Control)
- Nitrate-nitrogen concentrations were significantly different (p = 0.01) between subbasins
- Ecosystem services provided by LID BMPs did provide the TW (Treatment) sub-basin with long term economic benefits which over time could outweigh the capital costs of construction
- In conclusion, the data collected represent a highly variable manmade system in which LII BMPs do provide beneficial water quantity and quality functions, as well as economic alternatives to traditional stormwater management

- LID BMPs significantly decreased peak discharge rates (p = 0.040), when comparing TE (Control) to TW (Treatment)
- Total runoff volumes showed no significant differences between the two sub-basins even though 25 percent less water passed through TW (Treatment) compared to TE (Control)
- ► Nitrate-nitrogen concentrations were significantly different (p = 0.01) between sub-basins
- Ecosystem services provided by LID BMPs did provide the TW (Treatment) sub-basin with long term economic benefits which over time could outweigh the capital costs of construction
- In conclusion, the data collected represent a highly variable manmade system in which LI BMPs do provide beneficial water quantity and quality functions, as well as economic alternatives to traditional stormwater management

- LID BMPs significantly decreased peak discharge rates (p = 0.040), when comparing TE (Control) to TW (Treatment)
- Total runoff volumes showed no significant differences between the two sub-basins even though 25 percent less water passed through TW (Treatment) compared to TE (Control)
- ► Nitrate-nitrogen concentrations were significantly different (p = 0.01) between sub-basins
- Ecosystem services provided by LID BMPs did provide the TW (Treatment) sub-basin with long term economic benefits which over time could outweigh the capital costs of construction
- In conclusion, the data collected represent a highly variable manmade system in which LID BMPs do provide beneficial water quantity and quality functions, as well as economic alternatives to traditional stormwater management

ACKNOWLEDGEMENTS

I would like to thank the US Environmental Protection Agency and the Oklahoma Conservation Commission for project funding (OCC Task 11-159 FY 2011 §319(h) Project 5 EPA Grant C9-996100-16)

I would like to thank Noah Berg-Mattson, Juan Arango, Kandace Steele, Dr. Julie LaBar, and Nicholas Shepherd with their help in sample management and water quality analysis

I would like to thank Heather Kohl, Kathy Schweitzer, and Shana Wild for their moral support as I progressed through this project

QUESTIONS/COMMENTS

