BROWNSVILLE TO PORT ISABEL HUC-10 WATERSHED STUDY

LOWER RIO GRANDE VALLEY 24TH ANNUAL WATER QUALITY MANAGEMENT & PLANNING CONFERENCE

JUNE 10, 2022

PROJECT TEAM

- □ Technical Consultant (Halff Associates)
- Anne Whitko Sponsor Liaison
- John Clint, PE Sponsor Liaison
- Ryan Londeen, PE, CFM Project Manager
- Andrew Moore, PE, CFM Technical Consultant
- Elmer Hinojosa, EIT Production Staff
- Grimaldo Carrillo Production Staff
- □ Sponsor (City of Brownsville)
- Doroteo Garcia, PE City Engineer
- Luis Alonso, PE Assistant City Engineer

D TWDB

Malcolm Hamilton – TWDB Representative

OVERVIEW

□ Study Area

- □ Study Goals and Scope
- Project Schedule
- Data Collection
- □ Flood Modeling
- □ Next Steps
- Questions

STUDY AREA

□ Encompasses 366 square miles of Cameron

County's southern region.

- □ Major Stakeholders:
 - Los Fresnos
 - Rancho Viejo
 - Olmito
 - Brownsville
 - Port Isabel
- □ Approx. Population within study area = 290,000
- □ Over 250 miles of Drainage Ditches/Resacas
- □ Effective Floodplain = 190 square miles
- Region drains <u>east</u> through a series of natural and man-made channels to the Bahia Grande and ultimately to the Gulf of Mexico

STUDY AREA OVERVIEW

STUDY GOALS AND SCOPE

- Public and Stakeholder Engagement
 - Feedback
 - Education
- Develop up-to-date flood models
- □ Identify areas of high flood risk
- □ Identify and evaluate 10 mitigation **projects**
 - □ Scope
 - Benefit
 - Cost
 - □ Impacts
- Create flood risk mapping
- Drainage Master Plan and CIP

SCHEDULE

DATA COLLECTION - OVERVIEW

□ Repetitive Loss Data

- □ ID Known flooding issues
- □ Major Flood Complaints
- □ Previous Drainage Studies
- □ GIS Data (storm sewer, etc)
- Previous models
- □ As-Builts of Drainage Structures
- Bid Tabs for Recent Drainage Projects
- Other information

DATA COLLECTION - RESOURCES

TWDB

OTHER DATA SOURCES

DATA COLLECTION - SURVEY

Survey Data Collection

- □ Focusing on areas with current data gaps
- Stars represent areas where we have obtained survey or waiting to get survey
- Will continue to identify areas where topographic data is needed
- □ Survey Data Requested
 - Over 100 Crossing Structures (Culverts, Bridges)
 - Over 350 Channel Cross-Sections
- Channel survey is being converted to TINs to be burned into base Lidar.

DATA COLLECTION – PRELIMINARY HOT SPOT ANALYSIS

Community Stakeholders Meetings

□ Met with various stakeholder

representatives to get feedback

Got input / feedback on

- □ Local drainage issues
- Drainage patterns
- Past drainage projects
- □ Past drainage studies
- Locations of anticipated development

FLOOD MODELING

- Developing detailed 2D flood model for entire 366 square mile area
- Using latest modeling technology
- □ Using latest statistical rainfall Atlas 14
- □ "Synthetic" rainfall used to simulate storms

FLOOD MODELING - DRAFT RAIN-ON-MESH MODEL (TERRAIN)

Source: TNRIS

FLOOD MODELING - TERRAIN CONDITIONING

FLOOD MODELING - MANNING'S N

Source: Multi-Resolution Land Characteristics (MRLC) Consortium

FLOOD MODELING - INFILTRATION

FLOOD MODELING - DRAFT RAIN-ON-MESH MODEL

- Rapidly Developed Rain-On-Mesh Results (Preliminary)
 - Pure 2D hydraulic model
 - No crossing structures
 - Precipitation applied directly to cells
 - Infiltration and routing done within the hydraulic model
- Used to facilitate model

development strategy

• Will be used as a basis for future detailed modeling

FLOOD MODELING - DRAFT RAIN-ON-MESH MODEL (PONDING)

FLOOD MODELING – IN PROGRESS

□ Traditional Hydrology

4 Basins with different terrain characteristics being analyzed to compare against 2D modeling results

□ Incorporating structures into Hydraulic Model

- Currently adding structures obtained from previous models.
- Focusing on main drainage channels right now
- Will input structures from survey requests where data is missing.
- $\hfill\square$ Lidar will be updated with TINs generated from

surveyed channel cross-sections.

Identifying areas where model can be split in case runtimes get too long

Development Boa

NEXT STEPS

□ Calibrate model

- Based on gage locations and records, determine if any calibration data is available
- Run historic rain events (if available) and begin calibration efforts

Validate model

- Pictures
- Feedback we got from stakeholders
- □ Flooding complaint records
- □ Identify areas of high flood risk
 - □ Stakeholder records
 - Input received from public and stakeholder meetings
 - Modeling results

NEXT STEPS - MITIGATION PROJECTS

- Utilizing modeling results and
 community feedback to identify high
 flood risk areas
- Models will also be used to develop and evaluate flood mitigation projects
- Types of projects to be considered
 - □ Channels (e.g., Widening)
 - □ Channel Benching
 - Culvert Replacement

Development Board

- □ Bridge Widening
- Detention Ponds

QUESTIONS?

CONTACT (HALFF):

Anne Whitko (956) 303-7105 aWhitko@halff.com

Ryan Londeen, PE, CFM (936) 777-6383 <u>rlondeen@halff.com</u> CONTACT (TWDB): Malcolm Hamilton (512) 475-1591 Malcom. Hamilton@twdb.texas.gov

CONTACT (City of Brownsville): Doroteo Garcia Jr., PE, CFM, RAS (956) 541-1012 Doroteo.Garcia@brownsvilletx.gov

